31 research outputs found

    A region segmentation method to measure multiple features using a tactile scanning probe

    Get PDF
    Coordinate measuring machines (CMMs) have been widely used in industry to precisely measure parts for inspection or quality control. One of the main barriers to using a CMM touch-trigger probe is the cumbersome programming work required to identify the probing points and for scan path planning. In this paper, we propose a practical data-segmentation method to continuously measure multiple features of the workpiece using a scanning probe. This approach takes advantage of the fast data-capture capability of the scanning probe and, subsequently, the point dataset is segmented using the information extracted from the CAD model of the part. This methodology does not require tedious programming and all desired measurement results can be obtained from a single scan. The principle of the method is presented, and the feasibility of the method is experimentally verified on a bridge-type Hexagon DEA Global CMM equipped with a Leitz LSP-X1 probe. The proposed method avoids manual operation errors and generates more sampling points than traditional methods; therefore, theoretically providing lower measurement uncertainty. The test results also indicate that the new method using a scanning probe is easy to implement and can save more than 90% measurement time in comparison with a conventional touch-trigger method

    The Effect of the CO32- to Ca2+ Ion activity ratio on calcite precipitation kinetics and Sr2+ partitioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A proposed strategy for immobilizing trace metals in the subsurface is to stimulate calcium carbonate precipitation and incorporate contaminants by co-precipitation. Such an approach will require injecting chemical amendments into the subsurface to generate supersaturated conditions that promote mineral precipitation. However, the formation of reactant mixing zones will create gradients in both the saturation state and ion activity ratios (i.e., <inline-formula><m:math name="1467-4866-13-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:math></inline-formula>). To better understand the effect of ion activity ratios on CaCO<sub>3 </sub>precipitation kinetics and Sr<sup>2+ </sup>co-precipitation, experiments were conducted under constant composition conditions where the supersaturation state (Ω) for calcite was held constant at 9.4, but the ion activity ratio <inline-formula><m:math name="1467-4866-13-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mo class="MathClass-open">(</m:mo><m:mrow><m:mi>r</m:mi><m:mo class="MathClass-rel">=</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:mrow><m:mo class="MathClass-close">)</m:mo></m:mrow></m:math></inline-formula> was varied between 0.0032 and 4.15.</p> <p>Results</p> <p>Calcite was the only phase observed, by XRD, at the end of the experiments. Precipitation rates increased from 41.3 ± 3.4 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r = </it>0.0315 to a maximum rate of 74.5 ± 4.8 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r = </it>0.306 followed by a decrease to 46.3 ± 9.6 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r </it>= 1.822. The trend was simulated using a simple mass transfer model for solute uptake at the calcite surface. However, precipitation rates at fixed saturation states also evolved with time. Precipitation rates accelerated for low <it>r </it>values but slowed for high <it>r </it>values. These trends may be related to changes in effective reactive surface area. The <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1467-4866-13-1-i1"><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:math></inline-formula> ratios did not affect the distribution coefficient for Sr in calcite (D<sup>P</sup><sub>Sr</sub><sup>2+</sup>), apart from the indirect effect associated with the established positive correlation between D<sup>P</sup><sub>Sr</sub><sup>2+ </sup>and calcite precipitation rate.</p> <p>Conclusion</p> <p>At a constant supersaturation state (Ω = 9.4), varying the ion activity ratio affects the calcite precipitation rate. This behavior is not predicted by affinity-based rate models. Furthermore, at the highest ion ratio tested, no precipitation was observed, while at the lowest ion ratio precipitation occurred immediately and valid rate measurements could not be made. The maximum measured precipitation rate was 2-fold greater than the minima, and occurred at a carbonate to calcium ion activity ratio of 0.306. These findings have implications for predicting the progress and cost of remediation operations involving enhanced calcite precipitation where mineral precipitation rates, and the spatial/temporal distribution of those rates, can have significant impacts on the mobility of contaminants.</p

    Skeletal carbonate mineralogy of Scottish bryozoans

    Get PDF
    This paper describes the skeletal carbonate mineralogy of 156 bryozoan species collected from Scotland (sourced both from museum collections and from waters around Scotland) and collated from literature. This collection represents 79% of the species which inhabit Scottish waters and is a greater number and proportion of extant species than any previous regional study. The study is also of significance globally where the data augment the growing database of mineralogical analyses and offers first analyses for 26 genera and four families. Specimens were collated through a combination of field sampling and existing collections and were analysed by X-ray diffraction (XRD) and micro-XRD to determine wt% MgCO3 in calcite and wt% aragonite. Species distribution data and phylogenetic organisation were applied to understand distributional, taxonomic and phylo-mineralogical patterns. Analysis of the skeletal composition of Scottish bryozoans shows that the group is statistically different from neighbouring Arctic fauna but features a range of mineralogy comparable to other temperate regions. As has been previously reported, cyclostomes feature low Mg in calcite and very little aragonite, whereas cheilostomes show much more variability, including bimineralic species. Scotland is a highly variable region, open to biological and environmental influx from all directions, and bryozoans exhibit this in the wide range of within-species mineralogical variability they present. This plasticity in skeletal composition may be driven by a combination of environmentally-induced phenotypic variation, or physiological factors. A flexible response to environment, as manifested in a wide range of skeletal mineralogy within a species, may be one characteristic of successful invasive bryozoans

    An atomic force microscopy study of the growth of a calcite surface as a function of calcium/total carbonate concentration ratio in solution at constant supersaturation

    No full text
    Calcite growth experiments using atomic force microscopy (AFM) were conducted at two constant values of supersaturation (Qi = 5.248 and £22 = 6.457) while varying the Ca2+to CO32-concentration ratio. The calcite growth rate and the morphology of growth depend on the solution stoichiometry. At a constant degree of supersaturation, the growth rate was highest when the cation/total carbonate anion ratio, r*, was equal to 1 but decreased nonsymmetrically for higher or lower values of r*. The observed dependence of growth, rates on solution stoichiometry can be explained by nonequivalent attachment frequencies of cation and anion at ratios that differ from 1. At the same time, the morphology of the closing etch pits and of the forming nuclei was different when the rate changed, suggesting a change in the crystal growth mechanism. © 2009 American Chemical Society

    Crystal growth and dissolution of calcite in the presence of fluoride ions: An atomic force microscopy study

    No full text
    Growth and dissolution of calcite {1014} surfaces in aqueous solutions in the presence of fluoride ions have been studied by in situ atomic force microscopy (AFM). Supersaturated and undersaturated solutions with respect to calcite were prepared for the growth and dissolution experiments, respectively. The concentration range of solutions containing fluoride ions varied between 0.025 and 50 mM. The crystal growth rates were measured from the step growth of closing of etch pits along the [010] direction as well as the spreading of two-dimensional growth nuclei in the same direction. Dissolution rates were measured from the time-dependent development of the rhombohedral etch pits along both [010] and [421] directions. Low fluoride concentrations (=0.33 mM) in the supersaturated solutions did not significantly affect the crystal growth rates of calcite. At higher concentrations (up to 5 mM), the growth rate decreased substantially, reaching 50% of the respective rate in the absence of fluoride for the same supersaturation. It is suggested that the fluoride ions acted as inhibitors of calcite crystal growth, possibly through adsorption at the active growth sites. For dissolution experiments, the presence of both low and high fluoride concentrations (=1.1 mM and up to 50 mM) accelerated the rate of dissolution along the [421] direction up to 70% of the respective rate in pure water. The presence of fluoride changed the morphology of the dissolving rhombohedral etch pits to hexagonal. The morphology patterns of the dissolving calcite surface recorded by AFM imaging in the presence of fluoride ions suggested also that the fluoride ions were adsorbed onto the calcite surface. It seems likely that calcite growth and dissolution from aqueous solutions containing fluoride ions are governed by a complex interaction between the surface characteristics of the calcite crystal as well as changes in solvent structure, surface hydration, and ion solvation induced by the presence of fluoride. © 2009 American Chemical Society
    corecore